Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: covidwho-20244692

ABSTRACT

The three subsets of human monocytes, classical, intermediate, and nonclassical, show phenotypic heterogeneity, particularly in their expression of CD14 and CD16. This has enabled researchers to delve into the functions of each subset in the steady state as well as in disease. Studies have revealed that monocyte heterogeneity is multi-dimensional. In addition, that their phenotype and function differ between subsets is well established. However, it is becoming evident that heterogeneity also exists within each subset, between health and disease (current or past) states, and even between individuals. This realisation casts long shadows, impacting how we identify and classify the subsets, the functions we assign to them, and how they are examined for alterations in disease. Perhaps the most fascinating is evidence that, even in relative health, interindividual differences in monocyte subsets exist. It is proposed that the individual's microenvironment could cause long-lasting or irreversible changes to monocyte precursors that echo to monocytes and through to their derived macrophages. Here, we will discuss the types of heterogeneity recognised in monocytes, the implications of these for monocyte research, and most importantly, the relevance of this heterogeneity for health and disease.


Subject(s)
Macrophages , Monocytes , Humans , Monocytes/metabolism , Macrophages/metabolism , Phenotype , Hematopoiesis , Receptors, IgG/metabolism , Lipopolysaccharide Receptors/metabolism
2.
PLoS One ; 18(5): e0285532, 2023.
Article in English | MEDLINE | ID: covidwho-2320111

ABSTRACT

Antibody-dependent cellular cytotoxicity (ADCC) is one of the most powerful mechanisms for Natural Killer (NK) cells to kill cancer cells or virus-infected cells. A novel chimeric protein (NA-Fc) was created, which when expressed in cells, positions an IgG Fc domain on the plasma membrane, mimicking the orientation of IgG bound to the cell surface. This NA-Fc chimera was tested with PM21-NK cells, produced through a previously developed particle-based method which yields superior NK cells for immunotherapeutic applications. Real time viability assays revealed higher PM21-NK killing of both ovarian and lung cancer cells expressing NA-Fc, which correlated with increased release of TNF-α and IFN-γ cytokines from NK cells and was dependent on CD16-Fc interactions. Lentivirus delivery of NA-Fc to target cells increased the rate of PM21-NK cell killing of A549 and H1299 lung, SKOV3 ovarian and A375 melanoma cancer cells. This NA-Fc-directed killing was extended to virus infected cells, where delivery of NA-Fc to lung cells that were persistently infected with Parainfluenza virus resulted in increased killing by PM21-NK cells. In contrast to its effect on PM21-NK cells, the NA-Fc molecule did not enhance complement mediated lysis of lung cancer cells. Our study lays the foundation for application of the novel NA-Fc chimera that could be delivered specifically to tumors during oncolytic virotherapy to mark target cells for ADCC by co-treatment with adoptive NK cells. This strategy would potentially eliminate the need to search for unique cancer specific antigens for development of new antibody therapeutics.


Subject(s)
Killer Cells, Natural , Lung Neoplasms , Humans , Antibody-Dependent Cell Cytotoxicity , Cytokines/metabolism , Immunoglobulin G/metabolism , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Receptors, IgG/metabolism
3.
Viral Immunol ; 36(2): 144-148, 2023 03.
Article in English | MEDLINE | ID: covidwho-2258312

ABSTRACT

We report an asymptomatic child with heterotaxy syndrome who had recurrent positive SARS-CoV-2 polymerase chain reaction testing. An aberrant lymphocyte population expressing CD19, CD16, and CD56 was identified; its phenotyping revealing atypical NK cells. This subset's role in protection from severe disease or in reinfection cannot be ascertained.


Subject(s)
Asymptomatic Infections , COVID-19 , Heterotaxy Syndrome , Killer Cells, Natural , Reinfection , Child , Humans , Male , COVID-19/complications , COVID-19/immunology , Heterotaxy Syndrome/complications , Killer Cells, Natural/immunology , Receptors, IgG/metabolism , Reinfection/complications , Reinfection/immunology , Antigens, CD19/metabolism , CD56 Antigen/metabolism
4.
Acta Paediatr ; 112(4): 805-812, 2023 04.
Article in English | MEDLINE | ID: covidwho-2240887

ABSTRACT

AIM: The immune status of children recovering from SARS-CoV-2 infection is not completely understood. We describe IgG antispike persistence in children infected during the first two pandemic waves. In addition, we compared with healthy controls their leukocyte populations and CD64 expression. METHODS: Cross-sectional study. Carried out from October 2021 to February 2022 in nonreinfected and nonvaccinated children with SARS-CoV-2 in 2020. The presence of antispike IgG was studied using chemiluminescent immunoassay. Leukocyte populations were analysed using flow cytometry and marked for CD45, CD4, CD8 and CD64. Statistical minor than 0.05 was considered significant. RESULTS: One hundred and eighty-three control and 77 patients were included. IgG antispike determinations were performed after a median of 501 days (262-464); 52 of 77 children were positive. Cases showed significantly higher percentages of monocytes, lymphocytes, CD8+ and CD4+ . In addition, CD64 expression was higher in monocytes and neutrophils. The presence of IgG antispike was accompanied by a higher percentage of CD64+ neutrophils. CONCLUSION: In our series, the SARS-CoV-2 IgG antispike protein was usually positive beyond 1 year after infection. Furthermore, leukocyte populations from cases differ from controls, with higher CD64 expression on neutrophils and monocytes. Prospective clinical observations are required to confirm the implications of these findings.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , Prospective Studies , Cross-Sectional Studies , Receptors, IgG/genetics , Receptors, IgG/metabolism , Immunoglobulin G , Antibodies, Viral
5.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: covidwho-2066141

ABSTRACT

The aim of the study was to evaluate the dynamic changes of the total Natural Killer (NK) cells and different NK subpopulations according to their differentiated expression of CD16/CD56 in COVID-19 patients. Blood samples with EDTA were analyzed on day 1 (admission moment), day 5, and day 10 for the NK subtypes. At least 30,000 singlets were collected for each sample and white blood cells were gated in CD45/SSC and CD16/CD56 dot plots of fresh human blood. From the lymphocyte singlets, the NK cells subpopulations were analyzed based on the differentiated expression of surface markers and classified as follows: CD16-CD56+/++/CD16+CD56++/CD16+CD56+/CD16++CD56-. By examining the CD56 versus CD16 flow cytometry dot plots, we found four distinct NK sub-populations. These NK subtypes correspond to different NK phenotypes from secretory to cytolytic ones. There was no difference between total NK percentage of different disease forms. However, the total numbers decreased significantly both in survivors and non-survivors. Additionally, for the CD16-CD56+/++ phenotype, we observed different patterns, gradually decreasing in survivors and gradually increasing in those with fatal outcomes. Despite no difference in the proportion of the CD16-CD56++ NK cells in survivors vs. non-survivors, the main cytokine producers gradually decline during the study period in the survival group, underling the importance of adequate IFN production during the early stage of SARS-CoV-2 infection. Persistency in the circulation of CD56++ NK cells may have prognostic value in patients, with a fatal outcome. Total NK cells and the CD16+CD56+ NK subtypes exhibit significant decreasing trends across the moments for both survivors and non-survivors.


Subject(s)
COVID-19 , Killer Cells, Natural , CD56 Antigen/metabolism , COVID-19/immunology , Cytokines/metabolism , Humans , Killer Cells, Natural/classification , Receptors, IgG/metabolism , SARS-CoV-2
6.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1984990

ABSTRACT

In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRß repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.


Subject(s)
COVID-19/complications , Hepatitis A Virus Cellular Receptor 2/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Monocytes/metabolism , Receptors, IgG/metabolism , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Alveolar Epithelial Cells/pathology , B-Lymphocytes/immunology , Blood Vessels/pathology , COVID-19/immunology , COVID-19/pathology , Cell Proliferation , Child , Cohort Studies , Complement Activation , Cytokines/metabolism , Enterocytes/pathology , Female , Humans , Immunity, Humoral , Inflammation/pathology , Interferon Type I/metabolism , Interleukin-15/metabolism , Lymphocyte Activation/immunology , Male , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/immunology , Superantigens/metabolism , Systemic Inflammatory Response Syndrome/pathology
7.
Nature ; 606(7914): 576-584, 2022 06.
Article in English | MEDLINE | ID: covidwho-1921629

ABSTRACT

SARS-CoV-2 can cause acute respiratory distress and death in some patients1. Although severe COVID-19 is linked to substantial inflammation, how SARS-CoV-2 triggers inflammation is not clear2. Monocytes and macrophages are sentinel cells that sense invasive infection to form inflammasomes that activate caspase-1 and gasdermin D, leading to inflammatory death (pyroptosis) and the release of potent inflammatory mediators3. Here we show that about 6% of blood monocytes of patients with COVID-19 are infected with SARS-CoV-2. Monocyte infection depends on the uptake of antibody-opsonized virus by Fcγ receptors. The plasma of vaccine recipients does not promote antibody-dependent monocyte infection. SARS-CoV-2 begins to replicate in monocytes, but infection is aborted, and infectious virus is not detected in the supernatants of cultures of infected monocytes. Instead, infected cells undergo pyroptosis mediated by activation of NLRP3 and AIM2 inflammasomes, caspase-1 and gasdermin D. Moreover, tissue-resident macrophages, but not infected epithelial and endothelial cells, from lung autopsies from patients with COVID-19 have activated inflammasomes. Taken together, these findings suggest that antibody-mediated SARS-CoV-2 uptake by monocytes and macrophages triggers inflammatory cell death that aborts the production of infectious virus but causes systemic inflammation that contributes to COVID-19 pathogenesis.


Subject(s)
COVID-19 , Inflammation , Monocytes , Receptors, IgG , SARS-CoV-2 , COVID-19/virology , Caspase 1/metabolism , DNA-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Inflammation/virology , Monocytes/metabolism , Monocytes/virology , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Receptors, IgG/metabolism
8.
Front Immunol ; 13: 834988, 2022.
Article in English | MEDLINE | ID: covidwho-1817941

ABSTRACT

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibited higher basal levels of activation measured by P-selectin surface expression and had poor functional reserve upon in vitro stimulation. To investigate this question in more detail, we developed an assay to assess the capacity of plasma from COVID-19 patients to activate platelets from healthy donors. Platelet activation was a common feature of plasma from COVID-19 patients and correlated with key measures of clinical outcome including kidney and liver injury, and APACHEIII scores. Further, we identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions. These data identified these potentially actionable pathways as central for platelet activation and/or vascular complications and clinical outcomes in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect.


Subject(s)
Blood Platelets/immunology , COVID-19/immunology , Complement C5a/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/physiology , Thromboembolism/immunology , Adult , Aminopyridines/pharmacology , Cells, Cultured , Female , Hospitalization , Humans , Male , Morpholines/pharmacology , Platelet Activation , Pyrimidines/pharmacology , Severity of Illness Index , Signal Transduction , Syk Kinase/antagonists & inhibitors
9.
Haematologica ; 107(10): 2445-2453, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1779916

ABSTRACT

In order to improve the safety of COVID-19 vaccines, there is an urgent need to unravel the pathogenesis of vaccineinduced immune thrombotic thrombocytopenia (VITT), a severe complication of recombinant adenoviral vector vaccines used to prevent COVID-19, and likely due to anti-platelet factor 4 (PF4) IgG antibodies. In this study, we demonstrated that 1E12, a chimeric anti-PF4 antibody with a human Fc fragment, fully mimics the effects of human VITT antibodies, as it activates platelets to a similar level in the presence of platelet factor 4 (PF4). Incubated with neutrophils, platelets and PF4, 1E12 also strongly induces NETosis, and in a microfluidic model of whole blood thrombosis, it triggers the formation of large platelet/leukocyte thrombi containing fibrin(ogen). In addition, a deglycosylated form of 1E12 (DG-1E12), which still binds PF4 but no longer interacts with Fcγ receptors, inhibits platelet, granulocyte and clotting activation induced by human anti-PF4 VITT antibodies. This strongly supports that 1E12 and VITT antibodies recognize overlapping epitopes on PF4. In conclusion, 1E12 is a potentially important tool to study the pathophysiology of VITT, and for establishing mouse models. On the other hand, DG-1E12 may help the development of a new drug that specifically neutralizes the pathogenic effect of autoimmune anti-PF4 antibodies, such as those associated with VITT.


Subject(s)
COVID-19 Vaccines , COVID-19 , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Animals , COVID-19 Vaccines/adverse effects , Epitopes , Fibrin , Humans , Immunoglobulin Fc Fragments , Immunoglobulin G , Mice , Platelet Activation , Platelet Factor 4/adverse effects , Platelet Factor 4/metabolism , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Receptors, IgG/genetics , Receptors, IgG/metabolism , Thrombocytopenia/chemically induced , Thrombosis/pathology
10.
Int Immunopharmacol ; 108: 108697, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1739816

ABSTRACT

Monocytes play a major role in the initial innate immune response to SARS-CoV-2. Although viral load may correlate with several clinical outcomes in COVID-19, much less is known regarding their impact on innate immune phenotype. We evaluated the monocyte phenotype and mitochondrial function in severe COVID-19 patients (n = 22) with different viral burden (determined by the median of viral load of the patients) at hospital admission. Severe COVID-19 patients presented lower frequency of CD14 + CD16- classical monocytes and CD39 expression on CD14 + monocytes, and higher frequency of CD14 + CD16 + intermediate and CD14-CD16 + nonclassical monocytes as compared to healthy controls independently of viral load. COVID-19 patients with high viral load exhibited increased GM-CSF, PGE-2 and lower IFN-α as compared to severe COVID-19 patients with low viral load (p < 0.05). CD14 + monocytes of COVID-19 patients with high viral load presented higher expression of PD-1 but lower HLA-DR on the cell surface than severe COVID-19 patients with low viral load. All COVID-19 patients presented decreased monocyte mitochondria membrane polarization, but high SARS-CoV-2 viral load was associated with increased mitochondrial reactive oxygen species. In this sense, higher viral load induces mitochondrial reactive oxygen species generation associated with exhaustion profile in CD14 + monocytes of severe COVID-19 patients. Altogether, these data shed light on new pathological mechanisms involving SARS-CoV-2 viral load on monocyte activation and mitochondrial function, which were associated with COVID-19 severity.


Subject(s)
COVID-19 , Monocytes , Biomarkers/metabolism , Humans , Lipopolysaccharide Receptors/metabolism , Mitochondria/metabolism , Phenotype , Reactive Oxygen Species/metabolism , Receptors, IgG/metabolism , SARS-CoV-2 , Viral Load
11.
PLoS One ; 17(3): e0257930, 2022.
Article in English | MEDLINE | ID: covidwho-1731590

ABSTRACT

The novel coronavirus, SARS-CoV-2 that causes COVID-19 has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination, and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization with a theoretical risk of antibody-dependent enhancement (ADE) of viral infection. Though vaccines elicit a strong and protective immune response and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV-2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcαR) or Fc gamma receptor IIA (FcγRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, not only supports the therapeutic use of currently available antibody-based treatment, including the continuation of CCP transfusion strategies, but also the use of various vaccine platforms in a prophylactic approach.


Subject(s)
COVID-19/therapy , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/virology , Female , HEK293 Cells , Humans , Immunization, Passive , Immunoglobulin A/blood , Immunoglobulin A/therapeutic use , Immunoglobulin G/blood , Immunoglobulin G/therapeutic use , Male , Middle Aged , Neutralization Tests , Receptors, IgG/genetics , Receptors, IgG/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Young Adult , COVID-19 Serotherapy
12.
Viruses ; 14(1)2021 12 28.
Article in English | MEDLINE | ID: covidwho-1715736

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) infection induces elevated levels of inflammatory cytokines, which are mainly produced by the innate response to the virus. The role of NK cells, which are potent producers of IFN-γ and cytotoxicity, has not been sufficiently studied in the setting of SARS-CoV-2 infection. We confirmed a different distribution of NK cell subsets in hospitalized COVID-19 patients despite their NK cell deficiency. The impairment of this innate defense is mainly focused on the cytotoxic capacity of the CD56dim NK cells. On the one hand, we found an expansion of the CD56dimCD16neg NK subset, lower cytotoxic capacities, and high frequencies of inhibitory 2DL1 and 2DL1/S1 KIR receptors in COVID-19 patients. On the other hand, the depletion of CD56dimCD16dim/bright NK cell subsets, high cytotoxic capacities, and high frequencies of inhibitory 2DL1 KIR receptors were found in COVID-19 patients. In contrast, no differences in the distribution of CD56bright NK cell subsets were found in this study. These alterations in the distribution and phenotype of NK cells might enhance the impairment of this crucial innate line of defense during COVID-19 infection.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/metabolism , Lymphocyte Subsets/metabolism , Receptors, KIR/metabolism , Aged , CD56 Antigen/metabolism , COVID-19/blood , Female , GPI-Linked Proteins/metabolism , Hospitalization , Humans , Inflammation , Male , Middle Aged , Receptors, IgG/metabolism , SARS-CoV-2
13.
Genome Med ; 14(1): 16, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1690882

ABSTRACT

BACKGROUND: Understanding the host genetic architecture and viral immunity contributes to the development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown. METHODS: We constructed a computational framework to characterize the host genetics that influence immune cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four independent scRNA-seq datasets containing healthy controls and patients with mild, moderate, and severe symptom (N = 606,534 cells). We collected 10 predefined gene sets including inflammatory and cytokine genes to calculate cell state score for evaluating the immunological features of individual immune cells. RESULTS: We found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly expressed genes increased with the severity of COVID-19. Three cell subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk genes of CCR1, CXCR6, and ABO were highly expressed in these three cell types, respectively. CCR1+CD16+monocytes and ABO+ megakaryocytes with significantly up-regulated genes, including S100A12, S100A8, S100A9, and IFITM1, confer higher risk to the dysregulated immune response among severe patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality including elevation of proliferation, migration, and chemotaxis. Moreover, we observed an increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues. The enhanced interactions of CXCR6+ memory CD8+T cells with epithelial cells facilitate the recruitment of this specific population of T cells to airways, promoting CD8+T cell-mediated immunity against COVID-19 infection. CONCLUSIONS: We uncover a major genetics-modulated immunological shift between mild and severe infection, including an elevated expression of genetics-risk genes, increase in inflammatory cytokines, and of functional immune cell subsets aggravating disease severity, which provides novel insights into parsing the host genetic determinants that influence peripheral immune cells in severe COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/virology , COVID-19/genetics , COVID-19/pathology , Monocytes/virology , Single-Cell Analysis/methods , COVID-19/immunology , Computational Biology/methods , GPI-Linked Proteins/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Megakaryocyte Progenitor Cells/immunology , Megakaryocyte Progenitor Cells/virology , Monocytes/metabolism , Quantitative Trait Loci , Receptors, CCR1/immunology , Receptors, CCR1/metabolism , Receptors, CXCR6/immunology , Receptors, CXCR6/metabolism , Receptors, IgG/metabolism , Sequence Analysis, RNA , Severity of Illness Index
14.
Int J Mol Sci ; 22(16)2021 Aug 21.
Article in English | MEDLINE | ID: covidwho-1662690

ABSTRACT

Infection with viruses, such as the lactate dehydrogenase-elevating virus (LDV), is known to trigger the onset of autoimmune anemia through the enhancement of the phagocytosis of autoantibody-opsonized erythrocytes by activated macrophages. Type I interferon receptor-deficient mice show enhanced anemia, which suggests a protective effect of these cytokines, partly through the control of type II interferon production. The development of anemia requires the expression of Fcγ receptors (FcγR) I, III, and IV. Whereas LDV infection decreases FcγR III expression, it enhances FcγR I and IV expression in wild-type animals. The LDV-associated increase in the expression of FcγR I and IV is largely reduced in type I interferon receptor-deficient mice, through both type II interferon-dependent and -independent mechanisms. Thus, the regulation of the expression of FcγR I and IV, but not III, by interferons may partly explain the exacerbating effect of LDV infection on anemia that results from the enhanced phagocytosis of IgG autoantibody-opsonized erythrocytes.


Subject(s)
Anemia, Hemolytic, Autoimmune/immunology , Arterivirus Infections/immunology , Interferons/metabolism , Lactate dehydrogenase-elevating virus/immunology , Receptors, IgG/metabolism , Anemia, Hemolytic, Autoimmune/virology , Animals , Arterivirus Infections/virology , Host-Pathogen Interactions , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis
15.
Front Immunol ; 12: 799558, 2021.
Article in English | MEDLINE | ID: covidwho-1662582

ABSTRACT

The poor outcome of the coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, is associated with systemic hyperinflammatory response and immunopathology. Although inflammasome and oxidative stress have independently been implicated in COVID-19, it is poorly understood whether these two pathways cooperatively contribute to disease severity. Herein, we found an enrichment of CD14highCD16- monocytes displaying inflammasome activation evidenced by caspase-1/ASC-speck formation in severe COVID-19 patients when compared to mild ones and healthy controls, respectively. Those cells also showed aberrant levels of mitochondrial superoxide and lipid peroxidation, both hallmarks of the oxidative stress response, which strongly correlated with caspase-1 activity. In addition, we found that NLRP3 inflammasome-derived IL-1ß secretion by SARS-CoV-2-exposed monocytes in vitro was partially dependent on lipid peroxidation. Importantly, altered inflammasome and stress responses persisted after short-term patient recovery. Collectively, our findings suggest oxidative stress/NLRP3 signaling pathway as a potential target for host-directed therapy to mitigate early COVID-19 hyperinflammation and also its long-term outcomes.


Subject(s)
COVID-19/metabolism , Inflammasomes/metabolism , Lipopolysaccharide Receptors/metabolism , Monocytes/metabolism , Oxidative Stress/physiology , Receptors, IgG/metabolism , Aged , COVID-19/pathology , Caspase 1/metabolism , Female , GPI-Linked Proteins/metabolism , Humans , Interleukin-1beta/metabolism , Male , Middle Aged , Mitochondria/metabolism , Mitochondria/pathology , Monocytes/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2/metabolism , Signal Transduction/physiology
17.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: covidwho-1572660

ABSTRACT

Patients with COVID-19 generally raise antibodies against SARS-CoV-2 following infection, and the antibody level is positively correlated to the severity of disease. Whether the viral antibodies exacerbate COVID-19 through antibody-dependent enhancement (ADE) is still not fully understood. Here, we conducted in vitro assessment of whether convalescent serum enhanced SARS-CoV-2 infection or induced excessive immune responses in immune cells. Our data revealed that SARS-CoV-2 infection of primary B cells, macrophages and monocytes, which express variable levels of FcγR, could be enhanced by convalescent serum from COVID-19 patients. We also determined the factors associated with ADE, and found which showed a time-dependent but not viral-dose dependent manner. Furthermore, the ADE effect is not associated with the neutralizing titer or RBD antibody level when testing serum samples collected from different patients. However, it is higher in a medium level than low or high dilutions in a given sample that showed ADE effect, which is similar to dengue. Finally, we demonstrated more viral genes or dysregulated host immune gene expression under ADE conditions compared to the no-serum infection group. Collectively, our study provides insight into the understanding of an association of high viral antibody titer and severe lung pathology in severe patients with COVID-19.


Subject(s)
Antibody-Dependent Enhancement/immunology , Leukocytes/virology , SARS-CoV-2/pathogenicity , COVID-19/immunology , Cells, Cultured , Gene Expression Profiling , Humans , Immune Sera/immunology , Leukocytes/metabolism , Receptors, IgG/metabolism , Virus Replication/immunology
18.
mBio ; 12(5): e0198721, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1494967

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the detrimental effects of antibodies. Antibody-dependent enhancement (ADE) of infection is one of the biggest concerns in terms of not only the antibody reaction to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon reinfection with the virus but also the reaction to COVID-19 vaccines. In this study, we evaluated ADE of infection by using COVID-19 convalescent-phase plasma and BHK cells expressing human Fcγ receptors (FcγRs). We found that FcγRIIA and FcγRIIIA mediated modest ADE of infection against SARS-CoV-2. Although ADE of infection was observed in monocyte-derived macrophages infected with SARS-CoV-2, including its variants, proinflammatory cytokine/chemokine expression was not upregulated in macrophages. SARS-CoV-2 infection thus produces antibodies that elicit ADE of infection, but these antibodies do not contribute to excess cytokine production by macrophages. IMPORTANCE Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of infection for viruses to infect immune cells that is mediated by antibodies and IgG receptors (FcγRs). Because ADE of infection contributes to the pathogenesis of some viruses, such as dengue virus and feline coronavirus, it is important to evaluate the precise mechanism of ADE and its contribution to the pathogenesis of SARS-CoV-2. Here, using convalescent-phase plasma from COVID-19 patients, we found that two types of FcγRs, FcγRIIA and FcγRIIIA, mediate ADE of SARS-CoV-2 infection. Although ADE of infection was observed for SARS-CoV-2 and its recent variants, proinflammatory cytokine production in monocyte-derived macrophages was not upregulated. These observations suggest that SARS-CoV-2 infection produces antibodies that elicit ADE of infection, but these antibodies may not be involved in aberrant cytokine release by macrophages during SARS-CoV-2 infection.


Subject(s)
Cytokines/metabolism , Macrophages/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/pathogenicity , Animals , Antibody-Dependent Enhancement/physiology , Cell Line , Cricetinae , Humans , Real-Time Polymerase Chain Reaction , Receptors, IgG/genetics
19.
Cell Rep ; 37(1): 109798, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1415262

ABSTRACT

Despite the worldwide effect of the coronavirus disease 2019 (COVID-19) pandemic, the underlying mechanisms of fatal viral pneumonia remain elusive. Here, we show that critical COVID-19 is associated with enhanced eosinophil-mediated inflammation when compared to non-critical cases. In addition, we confirm increased T helper (Th)2-biased adaptive immune responses, accompanying overt complement activation, in the critical group. Moreover, enhanced antibody responses and complement activation are associated with disease pathogenesis as evidenced by formation of immune complexes and membrane attack complexes in airways and vasculature of lung biopsies from six fatal cases, as well as by enhanced hallmark gene set signatures of Fcγ receptor (FcγR) signaling and complement activation in myeloid cells of respiratory specimens from critical COVID-19 patients. These results suggest that SARS-CoV-2 infection may drive specific innate immune responses, including eosinophil-mediated inflammation, and subsequent pulmonary pathogenesis via enhanced Th2-biased immune responses, which might be crucial drivers of critical disease in COVID-19 patients.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Complement System Proteins/immunology , Eosinophils/immunology , Inflammation/immunology , Pneumonia, Viral/immunology , SARS-CoV-2/immunology , Adaptive Immunity , Adult , Aged , Aged, 80 and over , Antigen-Antibody Complex/metabolism , COVID-19/metabolism , COVID-19/virology , Complement Activation , Complement Membrane Attack Complex/metabolism , Eosinophils/virology , Female , Humans , Inflammation/metabolism , Inflammation/virology , Lung Injury/immunology , Lung Injury/pathology , Lung Injury/virology , Male , Middle Aged , Pneumonia, Viral/metabolism , Receptors, IgG/immunology , Receptors, IgG/metabolism , Severity of Illness Index , Signal Transduction , Th2 Cells/immunology , Viral Load , Young Adult
20.
Front Immunol ; 12: 674079, 2021.
Article in English | MEDLINE | ID: covidwho-1305644

ABSTRACT

At homeostasis the vast majority of neutrophils in the circulation expresses CD16 and CD62L within a narrow expression range, but this quickly changes in disease. Little is known regarding the changes in kinetics of neutrophils phenotypes in inflammatory conditions. During acute inflammation more heterogeneity was found, characterized by an increase in CD16dim banded neutrophils. These cells were probably released from the bone marrow (left shift). Acute inflammation induced by human experimental endotoxemia (LPS model) was additionally accompanied by an immediate increase in a CD62Llow neutrophil population, which was not as explicit after injury/trauma induced acute inflammation. The situation in sub-acute inflammation was more complex. CD62Llow neutrophils appeared in the peripheral blood several days (>3 days) after trauma with a peak after 10 days. A similar situation was found in the blood of COVID-19 patients returning from the ICU. Sorted CD16low and CD62Llow subsets from trauma and COVID-19 patients displayed the same nuclear characteristics as found after experimental endotoxemia. In diseases associated with chronic inflammation (stable COPD and treatment naive HIV) no increases in CD16low or CD62Llow neutrophils were found in the peripheral blood. All neutrophil subsets were present in the bone marrow during homeostasis. After LPS rechallenge, these subsets failed to appear in the circulation, but continued to be present in the bone marrow, suggesting the absence of recruitment signals. Because the subsets were reported to have different functionalities, these results on the kinetics of neutrophil subsets in a range of inflammatory conditions contribute to our understanding on the role of neutrophils in health and disease.


Subject(s)
COVID-19/immunology , Endotoxemia/immunology , Inflammation/immunology , Neutrophils/immunology , SARS-CoV-2/physiology , Wounds and Injuries/immunology , Acute Disease , Adult , Aged , Cell Movement , Cells, Cultured , Chronic Disease , Female , Humans , L-Selectin/metabolism , Lipopolysaccharides/immunology , Male , Middle Aged , Receptors, IgG/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL